Jinsong Zhang

jinsongzhang@ucsb.edu | +1 (805) 9719834 | cam
2024.github.io | github.com/Cam
2024

EDUCATION

University of California, Santa Barbara

M.S. in Computer Engineering; GPA: 3.78/4.0

University of Liverpool

B.Eng. in Electrical and Electronic Engineering; GPA: 3.7/4.0

Xi'an Jiaotong-Liverpool University

B.Eng. in Electronic Science and Technology; GPA: 3.3/4.0

Santa Barbara, USA

Sep 2024 - Present

Liverpool, UK

Sep 2022 - Jun 2024

Suzhou, China

Sep 2020 - Jun 2022

SKILLS

Programming: C/C++, Verilog, Python (PyTorch, OpenCV), MATLAB, Assembly, HTML, CSS

Software: Vivado, Quartus, Vitis, Cadence, VS Code, PyCharm, Multisim

PUBLICATIONS

J. Zhang, M. Li, J. Tian, J. Lu, Z. Zhang. "Comprehensive Design Space Exploration for Tensorized Neural Network Hardware Accelerators." Submitted to Design Automation Conference (DAC) 2026 (Under Review). Available at arXiv preprint arXiv:2511.17971, 2025.

RESEARCH EXPERIENCE

Comprehensive DSE for Tensorized Neural Network Accelerators

 $Jan\ 2025-Nov\ 2025$

Research Assistant (First Author), University of California, Santa Barbara

Santa Barbara, USA

- Proposed a comprehensive Design Space Exploration (DSE) framework that jointly optimizes tensor contraction paths, hardware core partitioning, and dataflow mappings for efficient TNN deployment.
- Developed a global latency-driven search algorithm with MAC-guided path pruning to identify Pareto-optimal configurations, bridging the gap between algorithmic compression and hardware efficiency.
- Designed a parameterizable FPGA accelerator featuring a streaming Tensor Train (TT) contraction kernel and configurable systolic GEMM engine using Vitis HLS on Xilinx VU9P.
- Achieved 3.28x-4.00x inference and 3.42x-3.85x training latency speedups with 19.19 GOPS/W energy efficiency compared to dense baselines across ResNet-18 and ViT benchmarks.

YOLOv5s-Powered Vision System for Robot Swarms

Jun 2023 - Sep 2023

Researcher, Westlake University

Hangzhou, China

- Developed an innovative vision system integrating the YOLOv5s model with ROS for real-time object detection within a distributed robot swarm.
- Curated a comprehensive object detection dataset by leveraging ROS in conjunction with cameras; conducted model training with a custom dataset.
- Optimized inference latency by migrating image preprocessing pipelines and ROS topic publishing from Python to C++, achieving significantly higher frame rates for real-time control.
- Implemented object detection for a swarm of robots, enhancing overall intelligence and coordination capabilities.

Real-time Slope Perception Module for UAV

May 2023 – Jul 2023

Researcher, Westlake University

Hangzhou, China

- Designed a perception module integrating multiple laser distance sensors and an IMU for real-time terrain monitoring.
- Implemented a Moving Average Filter algorithm to mitigate sensor noise, ensuring stable and accurate slope estimation on inclined surfaces.
- Integrated the system with the microcontroller via efficient serial communication, enabling the UAV to visualize slope data and adapt to terrain changes.

PROJECTS

Custom 32-bit 5-Stage Pipelined RISC-V Processor | Verilog, Cadence Virtuoso

Sep 2024 – Dec 2024

- Designed a 5-stage pipelined processor in Verilog, implementing Forwarding and Stalling mechanisms to resolve data and control hazards.
- Constructed a transistor-level implementation of the processor datapath using Cadence, verifying logic correctness through waveform simulation.
- Conducted cross-verification between the RTL and the transistor-level schematic to ensure design consistency.

RNN based Aircraft Trajectory Prediction | Final Year Project

Oct 2023 - May 2024

- Implemented Recurrent Neural Networks (RNNs) using PyTorch, specifically focusing on LSTM and GRU models, to predict aircraft trajectories based on ADS-B data.
- Processed the Aircraft Localization Competition dataset by handling data imputation, cleaning, and structuring to ensure high-quality inputs.
- Designed and tested both single-feature and multi-feature input-output models to assess the impact of feature selection on prediction accuracy.